
http://www.windx.com

E X P E R T

COMPONENT  BU I LDER

b y  K a r l  E .  P e t e r s o n

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency
and serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Washington, he’s also an inde-
pendent programming consultant special-
izing in ActiveX controls and a coauthor of
Visual Basic 4 How-To (Waite Group Press).
Online, he’s a Microsoft MVP and a section
leader in both VBPJ online forums. Contact
Karl at karl@rtc.wa.gov.

Replace the VB

animation control

with one that

lets you read and

write properties at

run time.

Write Your Own
Animation Control

Click & Retrieve
Source

CODE!
progress bar tossed in for good measure. This approach is far superior to the older
style of simply displaying an hourglass, which can leave the user wondering whether
the computer is doing anything. The VB implementation of animation retains a couple
of serious limitations, however: you must distribute an additional control,
COMCT232.OCX, to include animations in your project; and COMCT232 doesn’t
support playing animations from a resource file.

In this article, I’ll show you how to construct a simple class—CANIMATE.CLS—that
supports playing AVI files and resources in your apps, but doesn’t require you to ship an
extra OCX (see Figure 1). CANIMATE.CLS takes advantage of a feature unique to
animation controls by allowing the control to use a separate thread for animation
processing. Bringing control of this thread into your application permits
experimentation in ways that COMCT232 doesn’t support. For example, if you break your
program under the  Integrated Development Environment (IDE), you can set properties
of the class from the Immediate Window and watch how the new settings affect the
animation. Operating on a separate thread also helps ensure that the animation continues
without interruption, no matter how busy your application gets.

A fundamental flaw (“by design” in Microspeak) in the API prevents COMCT232
from using an application’s resource file. If animations could be played directly from
memory, as sound files can, this wouldn’t be an issue. You must pass the instance
handle (hInstance) your resources will be read from when Windows creates the
window that plays your animation. But changes in Win32 have rendered instance
handles less meaningful than they were in Win16. An instance handle is essentially the
base address at which a module loads. But under Win32, each process has its own
memory space, so modules in different processes can have the same instance handle.
Therefore, the animation API can load resources only from the module that creates the
animation window. For more complete details, see Knowledge Base articles Q149688
and Q103644 (http://www.microsoft.com/support).

This restriction means you must bring the window creation and control within the
application, rather than delegating to a control. You can do this by using a class that

hy would a business app require animation? Consider the ultimate business
app: Windows. Windows typically informs a user that a long process such as
file copying is underway with a multiframe animation of flying paper and a
Implement Animation and Progress Bar Classes. This sample applet
demonstrates how to eliminate two OCX files by wrapping their functionality

into classes within the project.

FIGURE 1
Visual Basic Programmer’s Journal   JANUARY 1998     123



E X P E R T

COMPONENT  BU I LDER

1

_

FIGURE X

Option Explicit
Private Declare Function InitCommonControlsEx Lib _
"Comctl32.dll" (iccex As tagInitCommonControlsEx) As 
Boolean

Private Type tagInitCommonControlsEx
lngSize As Long
lngICC As Long

End Type
Private Const ICC_ANIMATE_CLASS = &H80
Private Const ANIMATE_CLASS = "SysAnimate32"
Private Const ACS_CENTER = &H1&
Private Const ACS_TRANSPARENT = &H2&
Private Const ACS_AUTOPLAY = &H4&
Private Const ACS_TIMER = &H8&
Private Const WM_USER = &H400&
Private Const ACM_OPEN = WM_USER + 100
Private Const ACM_PLAY = WM_USER + 101
Private Const ACM_STOP = WM_USER + 102
Private m_hWnd As Long
Private m_hWndParent As Long
Private m_AutoPlay As Boolean
Private m_Center As Boolean
Private m_Transparent As Boolean
Private m_Visible As Boolean
Private m_Playing As Boolean
Private m_AniResID As Long
Private m_AniFile As String
Private Sub Class_Initialize()
Dim iccex As tagInitCommonControlsEx
' Initialize common controls DLL
With iccex

.lngSize = LenB(iccex)

.lngICC = ICC_ANIMATE_CLASS
End With
Call InitCommonControlsEx(iccex)

End Sub
Private Sub Class_Terminate()
Call AniDestroy

End Sub
Public Property Get hWnd() As Long
hWnd = m_hWnd   ' ReadOnly!

End Property
Public Property Let AutoPlay(ByVal NewVal As Boolean)
m_AutoPlay = NewVal
If m_hWnd Then Call AniCreate

End Property
Public Property Get AutoPlay() As Boolean
AutoPlay = m_AutoPlay

End Property
Public Property Let Center(ByVal NewVal As Boolean)
m_Center = NewVal
If m_hWnd Then Call AniCreate

End Property
Public Property Get Center() As Boolean
Center = m_Center

End Property
Public Property Let FileName(ByVal NewVal As String)
m_AniFile = NewVal
m_AniResID = 0
Call OpenAnimation

End Property
Public Property Get FileName() As String
FileName = m_AniFile

End Property
Public Property Let ResourceID(ByVal NewVal As Long)
m_AniResID = NewVal
m_AniFile = ""
Call OpenAnimation

End Property
Public Property Get ResourceID() As Long
ResourceID = m_AniResID

End Property
Public Property Let Parent(ByVal NewVal As Long)
m_hWndParent = NewVal
If m_hWnd Then Call AniCreate

End Property
Public Property Get Parent() As Long
Parent = m_hWndParent
24     JANUARY 1998   Visual Basic Programmer’s Journal
End Property
Public Property Let Transparent(ByVal NewVal As Boolean)
m_Transparent = NewVal
If m_hWnd Then Call AniCreate

End Property
Public Property Get Transparent() As Boolean
Transparent = m_Transparent

End Property
Public Sub AniPlay()
If m_hWnd = 0 Then Call AniCreate
m_Playing = CBool(SendMessage(m_hWnd, ACM_PLAY, _

-1&, ByVal &HFFFF0000))
End Sub
Public Sub AniStop()
Dim nRet As Long
If m_hWnd Then

nRet = SendMessage(m_hWnd, ACM_STOP, 0&, ByVal 0&)
If nRet Then m_Playing = False

End If
End Sub
Private Sub AniCreate()
Dim AniStyle As Long
Dim WasPlaying As Boolean
' Make sure we don't already have one
If m_hWnd Then

WasPlaying = m_Playing
Call AniDestroy

End If
' Combine style bits
AniStyle = WS_CHILD Or WS_CLIPSIBLINGS
If m_Visible Then AniStyle = AniStyle Or WS_VISIBLE
If m_AutoPlay Then AniStyle = AniStyle Or ACS_AUTOPLAY
If m_Center Then AniStyle = AniStyle Or ACS_CENTER
If m_Transparent Then AniStyle = AniStyle Or _

ACS_TRANSPARENT
' Create animation window
m_hWnd = CreateWindowEx(0, ANIMATE_CLASS, _

vbNullString, _
AniStyle, m_Left, m_Top, m_Width, m_Height, _
m_hWndParent, 0&, App.hInstance, ByVal 0&)

' Restart animation if was playing before window
' recreation
If WasPlaying Then

Call OpenAnimation
Call AniPlay

End If
End Sub
Private Sub OpenAnimation()
Dim nRet As Long
' Make sure we have a window to
' work with, or stop any existing animations.
If m_hWnd = 0 Then

Call AniCreate
Else

Call AniStop
End If
' Load animation.
If m_hWnd Then

If m_AniResID Then
nRet = SendMessage(m_hWnd, _
ACM_OPEN, 0&, ByVal m_AniResID)

ElseIf Len(m_AniFile) Then
nRet = SendMessage(m_hWnd, _
ACM_OPEN, 0&, ByVal m_AniFile)

End If
If m_AutoPlay Then

m_Playing = CBool(nRet)
Else

m_Playing = False
End If

End If
End Sub
Private Sub AniDestroy()
If m_hWnd Then

Call AniStop
DestroyWindow m_hWnd

End If
End Sub
The CAnimate Class Replaces OCX. This class wraps up nearly all existing functionality, and adds significant new
functionality to the OCX-based implementation that comes with VB. Numerous elements of this class, including common API

declarations and nonessential properties and methods, were omitted from this listing to conserve space.

LISTING 1
http://www.windx.com



E X P E R T

COMPONENT  BU I LDER

Code Online
You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.windx.com. For de-
tails, please see “Get Extra Code in DevX’s
Premier Club” in Letters to the Editor.

Write Your Own Animation Control
Locator+ Codes
Listings ZIP file, plus expanded code to cover
sections that space didn’t permit printing. The
source also includes a working version of the
demo, as well as the text of the KB articles cited
in the article (free Registered Level): VBPJ0198

 Listings for this article, the files de-
scribed above, plus an ActiveX DLL that imple-
ments an enhanced version of the CAnimate
class. The enhanced version adds a BackColor
property and enforces it by subclassing the
parent window. You can also find an assort-
ment of AVIs, some original and some that
ship with VB, rolled into this DLL (subscriber
Premier Level): CB0198P
contains the animation control wholly
within the base module, or by delegating
to an in-process server that contains the
needed resources. I used a class module
because it is more flexible.

Coding CANIMATE.CLS is straightfor-
ward, with only a couple exceptions (see
Listing 1). The class exposes public prop-
erties that parallel those exposed by
COMCT232, but it goes a step further in
allowing you to read and write at run time
all properties other than hWnd. Inside the
class, you can set three critical animation
control styles—autoplay, centered, and
transparent—at the time of window cre-
ation only. Thus, your class must be able
to destroy and re-create the control to
support changing these styles at any
time—an approach the designers of VB
could have chosen, but didn’t.

CODE THE CLASS
On initialization, the class ensures that the
Common Controls DLL itself is initialized.
Your control uses this DLL to provide its
functionality. The class then sets all the
private member variables, which are used
to track the control state and style, to their
defaults. Space doesn’t permit printing this
portion of the class, but you can acquire
this code from the free, Registered Level of
The Development Exchange (see the Code
Online box for details). The class defers
creating the control until it’s actually refer-
enced. The Class_Terminate event calls
the private AniDestroy method, which
stops any running animation and destroys
the control window.

Most public properties follow the same
strategy when a new value is assigned to
them—if a control window exists, the prop-
erty procedure calls the private method
AniCreate. Otherwise, the control window
creation is deferred. AniCreate stores
information on whether an animation is
currently playing, then re-creates the
control window if the control window
exists. Then AniCreate combines the style
bits for the new window, basing them
on the public property settings, and calls
CreateWindowEx to create a new anima-
tion control window. When re-creating a
control, you must restore it to its original
state, except for the style being changed.
The last detail in AniCreate is to return the
animation state to what it had been. Do this
by restarting an animation that had been
playing before the routine was called.

CANIMATE.CLS defers window creation
for all properties, except those that assign
which animation to play: Filename and
ResourceID. This process prevents re-
peated window re-creations while the ani-
mation class is being set up. When the user
of the class assigns either the Filename or
http://www.windx.com
ResourceID properties, the one that isn’t
set is assigned a null value, and a call is
made to the private OpenAnimation
method. Depending on whether the con-
trol window already exists, OpenAnimation
either creates a new control window with
a call to AniCreate, or stops a running
animation by calling the public AniStop
method. OpenAnimation then opens the
requested animation and updates the
m_Playing tracking variable.

Setting up an instance of the CAnimate
class can be quite simple. If access to the
class object is required at various points
within a project, declare a form-level, or
even global, instance of the class. Then
assign the values to the relevant proper-
ties in the Form_Load (or other appropri-
ate) event:

Set Animate = New CAnimate
With Animate

.Parent = Me.hWnd

.AutoPlay = True

.Move 10, 15

.ResourceID = 105
End With

You can download a complete demo of
the CAnimate control, as well as the
CprogBar class, from the free, Registered
Level of The Development Exchange (see
the Code Online box for details).

The class-based approach allows you to
use AVIs compiled into your application’s
resource file. Well, sort of. Here you run into
another somewhat frustrating Microsoft
design. AniCreate uses App.hInstance
in the call to CreateWindowEx, but
App.hInstance returns the value of the IDE
itself rather than the value of your applica-
tion when running within VB’s IDE. So, you
face a dilemma. You can either load the AVI
from a file during your debugging sessions,
or you can forego the animation until you
begin testing compiled EXEs. You can also
compile the forms that use animation and
animation resources into an ActiveX DLL.

CONTROL THE BACKGROUND COLOR
You’ll find it trickier to control the back-
ground color of transparent animations.
When an animation is opened, the
control’s parent window is sent a
WM_CTLCOLORSTATIC notification mes-
sage. This message allows the parent to
set traits such as the background color or
text color for a static control. VB5 forms
and most VB5 controls typically respond
with a reasonable action to this message:
setting the static control’s backcolor to
the backcolor of the parent. VB4 doesn’t
behave quite as nicely, however, and nei-
ther do some common controls such as
TreeView and ListView.
Visual Basic
You must subclass the parent window
to obtain full control over the backcolor
of an animation. When your subclassing
routine receives these notification mes-
sages, the hDC to be used for the anima-
tion is passed in wParam, and the hWnd is
passed in lParam. Use the hWnd to vali-
date whether the animation window is
requesting colors, and use the hDC to set
these colors (this code uses the popular
freeware MsgHook custom control):

Private Sub MsgHook_Message(_
ByVal msg As Long, _
ByVal wp As Long, _
ByVal lp As Long, result As Long)
result = MsgHook.InvokeWindowProc(_

msg, lp, wp)
If msg = WM_CTLCOLORSTATIC Then

If lp = Animate.hWnd Then
Call SetBkColor(wp, _

NewBackColor)
End If

End If
End Sub

Of course, if you have VB5, you can
implement the subclassing code directly
within your app. For more details, see the
COMponent Builder column by Jonathan
Wood, “Create a Subclassing Control”
[VBPJ May 1997].

There you have it: an animation control
that takes the place of the standard anima-
tion control, but requires no separate OCX,
and sports increased functionality to boot.
Controls such as this illustrate an impor-
tant point: you don’t have to live with some-
thing just because it came that way out of
the box. With VB and a little ingenuity, you
can make it work the way you want it to. 
 Programmer’s Journal   JANUARY 1998     125


	Code

