
INTERMEDIATE
ASK THE VB PRO

94

Print Text at An Angle

by Karl E. Peterson

Ask the VB Pro provides you
with free advice on program-
ming obstacles, techniques,
and ideas. Read more an-
swers from our crack VB pros
on the Web at http://
www.inquiry.com/thevbpro.
You can submit your ques-
tions, tips, or ideas on the
site, or access a compre-
hensive database of previ-
ously answered questions.

ABOUT THIS COLUMN

Click & Retrieve
Source

CODE!
 relying on yet another control for this task. All’s well
except that I’d like to be able to print some text—for
example, the y-axis title—at an angle. I can’t find any
VB methods to support this, and am assuming I’ll
need to turn to the API.

Right you are. You need to create a logical font,
specifying all the characteristics you want. Once

you create the font, you can select it as the current font
into any device context. I assume you’re using either
a PictureBox control or the form itself to draw upon.
If so, the short answer is to populate a LogFont
structure and pass it to the CreateFontIndirect API.
CreateFontIndirect returns a font handle, which you
can pass to SelectObject for use in any device context
(see the Resources box for a caveat).

When you select the font into a picture box, by
passing the font handle and the control’s hDC prop-
erty, you can then use native VB graphics methods—
CurrentX, CurrentY, and Print—to draw with the
new font. When you’re finished, select the new font
back out of the device context and destroy it (see the
Resources box for more background).

The level of detail in these steps begs for encapsu-
lation. I’ve written a class that wraps the creation and
subsequent clean-up of logical fonts into a tidy black
box (download Listing A from The Development
Exchange; see the Download Free Code box at the
end of the article for details). The CLogFont class
accepts a StdFont object as the basic definition of the
font you want. You can simply pass the picture box’s
Font property to CLogFont’s LogFont property. The
LogFont property’s Set procedure assigns all the
properties of the passed Font to a StdFont object local
to the class, and calls the private CreateLogFont
procedure to create a logical font. If you don’t want

A

Q Rotating Text
My application graphs its own data, instead of
to rotate the font, you can now read the
CLogFont.Handle property and use it at will. To add
a twist, pass the desired angle to CLogFont.Rotation,
and a new log font is created using the passed value.
Here’s an example that prints text at a 45-degree angle
after a mouse click:

Private Declare Function SelectObject Lib _

"gdi32" (ByVal hDC As Long, ByVal hObject _

As Long) As Long

Private fnt As CLogFont

Private Sub Form_Load()

Set fnt = New CLogFont

Set fnt.LogFont = Picture1.Font

fnt.Rotation = 45

End Sub

Private Sub Picture1_MouseUp(Button As _

Integer, Shift As Integer, X As Single, _

Y As Single)

Dim hFont As Long

With Picture1

hFont = SelectObject(.hDC, fnt.Handle)

.CurrentX = X

.CurrentY = Y

Picture1.Print "Degrees: " & _

fnt.Rotation

Call SelectObject(.hDC, hFont)

End With

End Sub

The Form_Load event instantiates the class and
assigns its properties. The SelectObject API actually
assigns the logical font to the picture box. SelectObject
returns the handle of the font that was previously
selected into the specified device context. When the
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JANUARY 1999

custom font is no longer needed, another call to
SelectObject reassigns the picture box its previous
font. This step is critical, because the logical font
cannot be destroyed if it’s still selected into any device
context.

CLogFont handles all remaining dirty house-
keeping chores. Whenever a new font is assigned, or
a new angle requested, a call to DeleteObject de-
stroys the existing logical font—if any—before a
new one is created. When the Terminate event fires,
it destroys the logical font similarly. Neglecting such
clean-up is a classic example of what are called
“resource leaks”—a misnomer, because no leak ex-
ists per se, just a failure by the programmer to put
things back as they were found.

As you can see, the CreateFontIndirect API is rife
with options. If these intrigue you, I’d encourage
spending some time playing with them to observe how
simple changes can have interesting impacts. Another
powerful use for the CLogFont class is to support the
Font property you expose in your own UserControls.
If you write what’s known as an owner-drawn control,
this class provides the perfect link between the StdFont
object requested by your client and the font handle
required by the GDI calls you’ll be making.

Dismissing a MsgBox After Time
I’d like to pop up a MsgBox, but have it close

automatically if the user doesn’t respond within a
given time. I know I could create my own message
box replacement form, but doesn’t some API provide
a shortcut?

There’s no magic bullet, but with just a little bit
of trickery you can indeed coerce this result. Just

before showing the MsgBox, set a Timer control to
your desired time-out value and enable the timer.
When the timer fires, use the FindWindow API to
obtain the window handle of the message box, then
call SendMessage to pass WM_CLOSE to it (see
Listing 1). This results in the MsgBox returning the
default cancel response. That is, it’s exactly as if the
user had popped the [X] button in the upper-right.

“But wait,” you say, “message boxes block Timer
events!” That was true up through VB4. And it
remains true when you’re running in the develop-
ment environment. However, that’s definitely not
the case when you’re using either VB5 or VB6 to
compile your EXE. This change in behavior
allows us to pull tricks that before were impossible.
Experiment a bit to determine the value returned,
and how to interpret it, if you’re using multibutton
message boxes.

Make Great Circle Calculations
I see you work with Geographic Information

Systems (GIS). I am looking for the VB code, for use
in an MS Access application, that computes the Great

Q

A

Q

VBPJ JANUARY 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
Circle distance between two given points expressed in
latitude and longitude.

Well, this is one I’ve never needed before, but a
quick Web search found just what you’re looking

for. It turns out many Web sites offer such calculations
on their own forms, and a few have the algorithms
posted as well. I found the one I chose to convert from
CGI to VB at http://www.atinet.org/~steve/cs150/
cs150.html (see Listing 2). Another great source of
information on this topic is offered by the U.S. Census
Bureau at http://www.census.gov/cgi-bin/geo/
gisfaq?Q5.1, where you can find a discussion of the
pros and cons behind the many choices made in coding
up this algorithm.

The Distance function listed is actually part of a
class I worked up to provide easy input of coordinates
and desired scale units. Variables shown, but not local
to the function, were set elsewhere in the class, but I
believe the naming conventions should make their
usage clear. As coded, Distance uses point locations
expressed in decimal degrees. Converting from de-

A

Listing 1 VB5 opened many new possibilities by
allowing certain events to continue firing even while a
message box is displayed. Here, a Timer event is
employed to close a message box after a given time-out
has expired without user interaction. The important
thing to remember is that this only works from a
compiled EXE, not from within the development
environment.

Option Explicit

Private Declare Function FindWindow Lib "user32" _
Alias "FindWindowA" (ByVal lpClassName As String, _
ByVal lpWindowName As String) As Long

Private Declare Function SendMessage Lib "user32" _
Alias "SendMessageA" (ByVal hWnd As Long, ByVal wMsg _
As Long, ByVal wParam As Long, lParam As Any) As Long

Private Const WM_CLOSE = &H10

Private Const MsgTitle As String = "Test Message"

Private Sub Command1_Click()
With Timer1

.Interval = 2000

.Enabled = True
End With
MsgBox "I should disappear in two seconds.", , MsgTitle

End Sub

Private Sub Timer1_Timer()
Dim hWnd As Long
Timer1.Enabled = False
hWnd = FindWindow(vbNullString, MsgTitle)
Call SendMessage(hWnd, WM_CLOSE, 0, ByVal 0&)

End Sub

Firing Timer Events During a MsgBox CallVB5, VB6
• Microsoft Knowledge
Base article Q175535
points out an issue under
VB5/SP2 with selecting
a font into the Printer
object’s hDC. If you go
this route, read the article
and be sure to test.

• For more background
on selecting a font into a
picture box, see Microsoft
Knowledge Base articles
Q1154515 and Q119673.

RESOURCES
95

INTERMEDIATE
ASK THE VB PRO

96

When the timer fires, use the
FindWindow API to obtain the window
handle of the message box, then call
SendMessage to pass WM_CLOSE to it.
grees/minutes/seconds to this format works
like this:

.Decimal = Sgn(.Degrees) * _

(Abs(.Degrees) + _

.Minutes / 60 + _

.Seconds / 3600)

You can download the complete class
from the free, Registered Level of The
Development Exchange (see the Down-
load Free Code box for details). Calcula-
tions such as this can never be entirely
precise, so I urge a good deal of time spent
surfing the Web and reading up on all the
assumptions that go into such formulae, as
well as considering the various arguments
for and against each. VBPJ
Download the code for this issue of
VBPJ free from http://www.vbpj.com.

To get the free code for this entire
issue, type VBPJ0199 into the Loca-
tor+ field at the top right of the VBPJ
home page. (You first need to register,
for free, on DevX.) The free code for
this article includes all code listings,
plus the complete CLogFont and
CGreatCircle classes.

 To get the bonus code for this
article, available to DevX Premier Club
members, type VBPJ0199AP into the
Locator+ field. The bonus code in-
cludes all the free code described
above, plus example projects that
demonstrate the CLogFont and
CGreatCircle classes and another
example that demonstrates timing out
the different MsgBox styles.

DOWNLOAD FREE CODE

Karl E. Peterson is a GIS analyst with a
regional transportation planning agency and
serves as a member of the Visual Basic
Programmer’s Journal Technical Review
and Editorial Advisory Boards. Based in
Vancouver, Wash., he’s also an indepen-
dent programming consultant specializing in
ActiveX controls and contributes to various
journals. Karl coauthored Visual Basic 4
How-To (Waite Group Press). Online, he’s a
Microsoft MVP, and a section leader sev-
eral VBPJ online forums. Find more of Karl’s
VB samples at http://www.mvps.org/vb.

About the Author
VB4, VB5, VB6 Calculate Great Circle Distance

Listing 2 This function is part of a CGreatCircle class, and provides the distance between
any two points on a sphere. Alas, the Earth isn’t a perfect sphere, so the calculation is at
best a good approximation. All nonlocal variables are defined elsewhere in the class, which
is available for registered users on The Development Exchange.

Public Function Distance() As Double
Dim L1 As Double ' Start Point Latitude in radians
Dim L2 As Double ' End Point Latitude in radians
Dim N1 As Double ' Start Point Longitude in radians
Dim N2 As Double ' End Point Longitude in radians
Dim C As Double ' Cosine of the angle subtended by the

' segment of the great circle path
' between the two points

Dim A As Double ' Angle derived from C
Dim R As Double ' Radius of the Earth
Const Pi As Double = 3.141592654

' Set radius to user's choice
Select Case m_Units

Case Kilometers
R = 6378

Case NauticalMiles
R = 3444

Case StatuteMiles
R = 3963

End Select

' Convert start/end points to radians
L1 = m_Pt(Start).Latitude.Decimal * (Pi / 180)
N1 = m_Pt(Start).Longitude.Decimal * (Pi / 180)
L2 = m_Pt(Finish).Latitude.Decimal * (Pi / 180)
N2 = m_Pt(Finish).Longitude.Decimal * (Pi / 180)

' Calculate C and A
C = (Sin(L1) * Sin(L2)) + (Cos(L1) * Cos(L2) * Cos(N2 - N1))
A = Atn(Sqr(1 - (C * C)) / C) + Pi * (C - Abs(C)) / (2 * C)

' Return A multiplied by the radius of the Earth
Distance = A * R

End Function
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ JANUARY 1999

